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Abstract 
A theoretical model is presented which enables 

temperature distribution during Czochralski growth of 
Gallium Arsenide (GaAs) single crystal to be studied. It 

was observed that thermal stresses are induced by 
temperature variations in gallium arsenide (GaAs) crystal 

growth. The thermal stresses causes plastic deformations 

by cracks, dislocation, defect and dynamic interaction in 
the crystal. As the temperature increases, the pull rate 

increases , the radius of the crystal increases, the 
temperature distribution is more, also the most effective 

way to reduce solid-liquid interfacial temperature 

gradients is to increase the diameter of the crystal; this 
implies that it may be easier to grow large crystals with 

low temperature distribution and thermal stresses than 
small crystals.The temperature distribution in the 

Czochralski technique (CZ) growth of GaAs crystal 

obtained is in agreement with Jordan model. 
Key words; Temperature distribution, Czchralski growth, 
single crystal, Gallium arsenide, pull rate, time. 

 

Numeclatures 
h               the local heat generation in unit volume 
G                Gibbs free energy or Gebhart factor 

f                  View factor 
T                 the temperature, 

k                 the thermal conductivity 
en                a  normal of the surface 

q                 the heat flux 
hT                the heat transfer  coefficient, 

                 the Stefan-Bolzmann constan 
 fij                       the view factor between two surface elements 
U                test function space 
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Text               the external temperature 
                  the discrete Gebhart factor   

                   the number of surface elements 

                   the emissivity of the surface, 
Text              some external temperature 

G.(      ).   the Gebhart factor 
 Ai                the area of an surface element i 
i                   the number of nodes. 

                  basis functions 

                   unknown temperatures at selected points 
 
 

Introduction 
Czochralski technique (CZ) (Czochralski, 1918) is a popular method for 

growing a large size crystal. During the CZ growth, the melt is contained in a 
crucible, but the crystal is grown at the free top surface of the melt so that 
there is no contact between the crystal and the crucible. It is the important of 

the CZ technique that there is less strain in the crystal.  
 

 

 
Figure 1. Czochralski Crystal Growth Furnace 
 

  The grown crystal is slowly pulled upward as it grows so that the solid-

liquid interface is just above the level of the liquid surface. It is observed that 
crystalline nuclei can develop only if the temperature near crystalline nuclei is 
lower than melt temperature, that is, the interface between solid and liquid 

must be in super cooling state. Similarly, the temperature decreases as the 
crystal grows so that crystallization not only keeps super cooling state at the 

interface but also transfers heat along that direction. Therefore, the control of 
the temperature distribution · in CZ growth is an essential condition for crystal 
growth (Brice, et al., 1973 and Zhang, 1981).  
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Semiconductor materials, especially gallium arsenide (GaAs) single 
crystal, are very useful in the electronic industry. The single crystal of GaAs 

provides the material foundation for much of the current semiconductor device 
technology. It has been applied in the fabrication of short wavelength lasers(< 

0.9 J/m), light emitting diodes (LED) and discrete low noise or power field effect 
transistors (FETs) for microwave use [VonNeida, et al., 1986]. Compared with 
silicon (Si), GaAs has a high electron mobility. Therefore, it can be used in high 

speed electronic product. Because of the great application of GaAs substrate for 
electronic and optoelectronic circuits, it is very important to grow the large size 
crystal with a low defect. To have a low defect in crystal, the temperature  

during crystal growth should be controlled. Only a few related research have 
been carried out on temperature distribution on crystal growth.  

Ciszek and  Wang (2000). investigated Silicon Float-Zone Crystal Growth 
As A Tool For The Study Of Defects And Impurities. They observed that The low 
defect and impurity concentrations obtainable by float zoning allow baseline 

lifetimes over 20 milliseconds and photovoltaic device efficiencies over 22%, so 
small effects of impurities and defects can be detected easily. 

  Knrpnrnrck   (1975) studied Crystal Growth from the Melt: A Review.   In 
his review it was discovered that  the rate-controlling process may be diffusion 
in the melt, h eat flow, or the reaction at the crystal-melt interface Diffusion or 

heat-flow controlled growth  generally leads to a cellular morphology. For most 
silicates, interface-controlled growth leads to a faceted morphology. 

Bapuji et al (2008) studied numerically the transient laminar free 

convection from a vertical cone with non-uniform surface heat flux. They 
observed The velocity and temperature fields to  increases with time. The time 

taken to reach steady-state increases with increasing Pr or m.. The difference 
between temporal maximum values and steady state values (for both velocity 
and temperature) becomes less when Pr or m increases.  

Geiser et al (2006) Transient numerical study of temperature gradients 
during sublimation growth of SiC: Dependence on apparatus design. Using 
transient and stationary mathematical heat transfer models including heat 

conduction, radiation, and radio frequency (RF) induction heating, they 
numerically investigate the time evolution of temperature gradients in 

axisymmetric growth apparatus during the sublimation growth of silicon 
carbide (SiC) bulk single crystals by physical vapor transport (PVT) (modified 
Lely method). They observed that the size of the gradients was found to depend 

much less on the size of the powder charge, but being slightly smaller for the 
smaller amount of source powder. The seed temperature established at the end 

of the heating process and throughout the growth stage did not vary 
significantly with the considered different designs. The temperature gradients 
on the seed’s growth surface were also found to increase with time and 

temperature during heating, then to decrease during growth and cooling. 
Wang, and Hu (1998) Studied the Concentration distribution in solution crystal 
growth: effect of moving interface conditions The results show that it is 

imperative to consider the effect of the moving interfaces on the concentration 
distribution at the growth interface for some cases. 
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Jordan (1980) formulated a tractable model for crystal growth,  and obtained 
the temperature distribution in the crystal. This was done by solving the quasi-

steady-state partial differential equation for heat conduction subject to 
appropriate boundary conditions. He considered that the dislocation density is 

proportional within an additive constant to quantity which is mostly elastic. 
Furthermore, he set up the critical resolved shear stress (CRSS), which is 
assumed in most cases to be equal to the lower yield stress obtained by 

compression testing [Muller, et al., 1985]. Wherever the elastic stresses in the 
crystal exceed a threshold value (CRSS), dislocations are generated. Since this 
approach does not provide for differentiation between dislocation nucleation 

and multiplication, it can not be used for quantitative prediction of dislocation 
density [Motakef, 1991].  

In Czochralski method, the material to be grown is melted by induction 
or resistance heating under a controlled atmosphere in a suitable non-reacting 
container. By controlling the furnace temperature, the material is melted. A 

seed crystal is lowered to touch the molten charge. When the temperature of 
the seed is maintained very low compared to the temperature of the melt, by 

suitable water cooling arrangement, the molten charge in contact with the seed 
will solidify on the seed. Then the seed is pulled with simultaneous rotation of 
the seed rod and the crucible in order to grow perfect single crystals. Diffusion 

rates are less and equilibration occurs more slowly at low than at high 
temperatures. Crystallization may occur more slowly at low than at high 
temperature.  Temperature effects can be more pronounced at low ionic 

strength reagent conditions. 
This present work considers the numerical simulation of the temperature 

distribution of GaAs Single Crystal using the Czochralski (CZ) Growth 
Technique. 
 

Mathematical modeling 

The temperature distribution of the crucible is solved from the energy 
equation. 

At the high temperatures radiation dominates the energy transport and 

convection may be neglected. The system changes gradually with time due to 
the crystal growth. The changes are, however, so slow that the system is 

assumed to be in a thermally stable state, and the energy equation becomes 
stationary.  

                                  (    )                                                                                 
Now h  is the local heat generation in unit volume which may result from 

inductive of resistive heating. The energy equation may have fixed (Dirichlet) or 
flux (Neumann) boundary conditions. Often the flux boundary conditions may 

be written as 

                              -(    )     (   )      (   )(      )                2.       
 

heat transfer by radiation is         q(r,T)=    (       
 )                                            
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If this is linearized by factorization  to the form given by Equation (2) the heat 

transfer coefficient  becomes 
 

 

  (   )       (       
 )(       

 )                                                               4.         

 
A special case of radiation is a boundary condition for a surface that sees 

itself at least partially. This makes the local external temperature dependent on 
the temperature of the boundary itself. Therefore the external temperature 
cannot be known a priori and must be calculated from the following equation, 

    
 ( )  

 

 ( )
  ∫  ( ) (       )  (   )                                                         5.           

The Gebhart factors are solutions of the integral equation 
 

G(     ) – ∫ (     )(1- (   )) G(     ) d     = F(     ) (  )                     6. 

 

F depends only on geometry of the system 
 
 

F(  ⃗⃗   )  = 
     (     )     (      )

          
   χ(     ),                                    7.                     

 

The boundary conditions must be set on both sides of the gap. For linear 
heat transfer the boundary condition at the sides are expressed by a dual 
boundary condition 

      

{
 (  ⃗⃗    )           (     )(      )

  (      )        (     )(      )
                                                                                      

8. 
 

In the case of radiation it is not necessary to calculate the view factors since 
it is obvious that at the interface the walls see the other side of the gap in a 
full angle. The heat transfer coefficient may now be analytically calculated 

to be 
 

    
   

             
      (T +   ) (      )                                                              9.            

 
 
Numerical Models 

Numerical solution of the physical models presented in the previous 
chapter requires some elaborate computational techniques. The outline of the 

numerical and computational techniques is presented here. The description of 
equilibrium chemistry leads to a minimization problem with some additional 
constraints. It could basically be solved with standard methods for 
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minimization problems. However, low partial pressures may make numerical 
derivation quite inaccurate.  

Therefore general optimization methods may fail and some special 
methods for the case must be used ( Smith and Missen 1982). Most of the 

physical models are expressed as partial differential equations. The finite 
element method (FEM) is a standard method for discretization of differential 
equations in complex geometries (Mohr 1992, Kardestuncer and Norrie 1987, 

Hämäläinen and Järvinen,1994).  It was also the method of choice in this work. 
There are different favors of FEM, depending on what kind of elements 

are used and how the values of functions are calculated inside the elements. In 

this work, the standard Galerkin  formulation with linear elements is always 
used. The advanced features in the FEM calculations deal with the 

implementation of the specific physical models and the multi-physics features 
of the code. The finite element method is used to solve the energy equation. 
This equation will be considered first since the finite element method is most 

conveniently introduced for this case. The discretization of the differential 
equation starts with writing the corresponding variational formulation, a so-

called weak form of the equation. In the axisymmetric case equation (1) yields 
 

 
 

  
(  

  

  
)   

 

 

 

  
(    

  

  
)                                                                   10. 

 
 

where the thermal conductivity tensor is assumed to be diagonal. 
Integrating over an axisymmetric volume  with boundary condition, and 

applying Green's theorem, Equations (3) and (2) give 
 
 

∫ (   
  

  

  

  
    

  

  

  

  
)

 
 r dr dz + ∫      

 
  =∫         

 
                11.                                                                                                                        

 
The unknown temperature distribution is expressed as a linear 

combination of the basis functions   . 

 

T(  ) =  ∑     
 
   (  )            12. 

 
The real-life geometries are seldom rectangular. Therefore also the 

elements used for discretization should be non rectangular. It is nowadays 
customary to use isoparametric elements to represent the geometry and use 

local coordinates in assembling the matrix equations. In this work, all the 
geometries are two-dimensional and only bilinear isoparametric basis functions 
are used. In the axisymmetric case the global coordinates r and z are expressed 

with the help of normalized coordinates   (    ) and η  (    ) 
 

r (ξ,η) =   ∑   (   )    
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z (ξ,η)  =    ∑   (   )    
    
                                                                                        

13. 
transforms the local point to the global coordinate system. The bilinear  
isoperimetric element is defined by the following basis functions 

 

  (   )    
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  (   )    
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                                                             (   )    
 

 
(   )(   )                                       14. 

 

The basis functions above are local basis functions associated with a 
given element. They are related to the global basis functions by 

  (  )  {
  (   ) 

  
  if    is within an element whose local node j is the global node I               

15. 
 
In the Galerkin formulation the basis functions are also used as a set of 
equation for  the  unknown temperatures 
 

∑  ∫ (  
   

  

   

  
   

   

  

   

  
)         ∫    (             )    ∫    

          
   

 
   

                                                                                                                16. 
The integration is performed numerically using Gaussian quadratures. 

The 

procedure results in a matrix equation that may be solved applying standard 
methods of linear algebra. The type of heat exchange q determines the nature 

of equation (16). If it is linear with temperature also the total equation is at 
least pseudo-linear. There might still be temperature dependent parameters, 
such as the thermal conductivity. If the heat exchange is due to radiation, the 

equation can still be solved as if it were linear. This requires the use of 
Equation (4). Linear boundary conditions can be split into two,  
 

∫        ∑ (∫    
         )   

 
     ∫              

  
 

  
                                17. 

 
Here, the first term is linear with respect to T and the second term is 

constant, or can at least be handled as constant. Truly nonlinear boundary 
conditions may lead to problems in convergence when treated as linear. This is 
the case for a boundary that is coupled to itself through the Gebhart factors. 

The discrete counterpart of Equation (3) is 
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         (  
      

 ),                                                                18. 

Where 

      
 = 

 

    
  ∑          

   
                                                              19                       

. The Gebhart factors Gji are  solutions of 

    ∑     (     )         
  
                                                          20. 
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                                     22.     

 
The difference between linear and nonlinear models is important in 

selecting the best method for solving the equations. Using the linear Iteration 
the solution  satisfies the equation 

 
A(t)t=f(t)    
                                                                                                    23. 

Where 

    ∫ (   
   

  

   

   
    

   

  

   

  
)          ∫            

  
                       24. 

And  

     ∫    
         ∫            

r dl.                                                 25.    

The iteration scheme is 

 

 (   )        ( ( )) f ( ( ))                                                                  26. 

 
 

Results and discussion 
Using the numerical method in the above equations and controlling a few 

of variables which are time, pull rate, radius, thermal diffusivity, and ambient 

temperature, we are able to get the temperature distribution. The temperature 
distribution are in Fig. 2, Fig. 3 and Fig.4 . However, for the rate of pull (p = 

0.003 cm/s), the value of the dislocation density is basic less than that in the 
other two cases at the same location. For the rate of pull is 0.001 cm/s, the 
value of defect is the highest. We  also observe that the  defects  is basic 

parallel to radius. And the distance between any two lines is very small. But 
the values on each are  different.  In those figures, the growth time is 1 hour, 

the radius of crystal is 3 cm and the thermal diffusivity is 0.04 cm2 I s. But the 
rates of pull are different, which are 0.003 cm/s, 0.002 cm/s and 0.001 cm/s, 
respectively. adjusting the value of the  pulling rate, at  0.001 cm/s, 0.002 

cm/s  as shown in Fig. 2 and Fig. 3, respectively.  we saw that the distribution 
defects occasioned by temperature distribution  are similar. To summarize the 

three cases, we observe that they have similar temperature distributions. The 
temperature gradient near the edge is greater than that near the center and the 
temperature gradient decreases as the crystal grows. We recall that the 

temperature distribution is also strongly varied on the axial location rather 
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than on the r coordinate. The value for the temperature gradient is extremely 
large where the axial location is near the melt-solid interface. Therefore, we can 

say that the high thermal gradient creates the high effective stress.  
It can be seen that the temperature distribution at the center point of 

GaAs melt is more uniform when the process of solidification is finished. The 
temperature gradient is the driving force for crystal growth and it is desirable 
to have vertical growth instead of horizontal. Hence, the vertical direction needs 

to maintain an appropriate temperature gradient and the temperature gradient 
in a horizontal direction needs to constantly decrease. The temperature of GaAs 
melt in the central region is higher than that near side boundaries and the heat 

transports from the central to the side region. The negative temperature 
gradient is formed and its value increases constantly with the growth of the 

GaAs. The figures show that as the temperature increases the pull rate 
increases , the radius of the crystal increases, the temperature distribution is 
more.  It means that the temperature is strongly varied on the axial location 

(related to <p) rather  than r coordinate. The result is consistent with the 
conclusion we obtained from Jordan's mathematical model.  

The first distinguishing characteristic of the temperature distribution is a 
sharp decrease of temperature near the crystallization front. 

          Temperature distribution 

 
Fig. 2. Temperature distribution of gallium arsenide . the radius of crystal 3x10-2m, thermal 

diffusivity 4x 10-4m2/sec, time of growth 1 hour, pull rate 3x10-3cm. 
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   Temperature distribution 

 
 
Fig.3. temperature distribution of gallium arsenide , radius of crystal 3x10-2m, thermal 
diffusivity 4x 10-4m2/sec, time of growth 1 hour, pull rate 2x10-3cm/sec. 

                                          Temperature distribution 

 
Fig.4. temperature distribution of gallium arsenide , radius of crystal 3x10-2m, thermal 

diffusivity 4x10-4m2/sec, time of growth 1 hour, pull rate 1x10-3cm/sec. 
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Conclusion 
We used Jordan's mathematic model [Jordan et al., 1980] to simulate the 

temperature distribution in the CZ growth of GaAs crystal. The model includes 
some parameters, such as time, pull rate, axial location, radius, convective and  

radiative  heat transfer coefficients, and a fixed ambient temperature. By 
controlling those parameters, we can obtain the temperature distribution 
which will generate a well-distributed dislocation. 
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