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ABSTRACT 
This paper is a study of the formalist contributions to the foundations of 
mathematics. The objective of the essay is to critically appraise the submissions 
of the formalist on what constitutes the foundations of mathematical 
propositions. The method adopted for this purpose is content analysis, which 
involves the study and evaluation of texts of formalist philosophies of 
mathematics. The study involved an analysis of the works of four key 
formalists, namely Hein, Thomae, Hilbert, and Curry. The early formalists, 
namely Hein and Thomae, did not produce formidable theoretical analysis. 
Hence, the study did not dwell much on their contributions. It was the 
theoretical submissions of Hilbert and Curry that formed the bulk of the 
analysis because of their depth and contemporary relevance. Although the 
theses of Hilbert and Curry were found to be a product of the scepticism of the 
object and a subsequent fallacy of ontological convenience, their contributions 
to the development of meta-mathematics and consequently modern 
mathematical logic were well noted. 
Keywords: Arithmetic, Meta-mathematics, Formalism, Finitism, 
Incompleteness, Consistency. 

 

Introduction 
The idea of formalism is not new to logical and mathematical studies. Greek 

mathematics was a formalisation of Egyptian geometry. The logical processes of human 
thought were formalised by Aristotle in his syllogism. Thus, the deductive method and its 
consequent formalistic structure are what Greek science has contributed to logical and 
mathematical research. This is not, however, to say that deduction is not human. But it is to 
argue that its systematic demonstration is historically rooted in Greek science. The 
predominance of a formalistic orientation in Greek mathematics, especially Euclidean 
geometry, led to the assumption that the axiomatic method was more essential to the 
Euclidean project than its contents, which were the descriptions of actual space. Such an 
assumption led great thinkers like Leibniz to regard Greek mathematics as a demonstration of 
logical perfection. Thus, he is quoted as having argued that "the Greeks reasoned with the 
greatest possible justice in mathematics" (Blanche, 1965, p.1). "In making it compulsory for 
schoolchildren, the aim is not so much to teach them truths but rather to discipline the mind, 
its practises being reputed to promote and develop the habit of rigorous reasoning" (Blanche, 
1965, p. 2). On such a basis, Brunschvig has argued that Euclid, for the numerous generations 
who have been brought up on his book, has been less a teacher of geometry than a teacher of 
logic. 

The foregoing assumption with respect to Euclidean geometry was made because it 
was thought that the three-fold formalistic features of formal systems were their essence. 
Such features are (i) the undefined terms; (ii) the undemonstrated propositions put forward as 
hypotheses; and (iii) the other propositions constructed from them according to the rules of 
logic explicitly stated. But unfortunately, Euclidean geometry has in recent times been exposed 



                                                                                  
 

  Development Studies Round Table (A Journal of Development), Vol. 7 No. 1          239 

as a pretence at sheer logical rigor. At least one of its postulates has really faced criticism due 
to an unfounded assumption. The postulate is his parallel postulate. It states that given a 
straight line, there is a point such that one and only one straight line can be drawn through it. 
This postulate has been shown to be logically untenable. The lines passing through the point 
define an infinite possibility. Besides, Euclid’s system was supposed to be purely deductive. Its 
axioms were assumed to be general rational principles. The postulates were to be understood 
as descriptions of space, on the basis of the axioms and the theorems to be deduced from 
these postulates. But Euclidean geometry is a complete deviation from these expectations. 
Mathematicians get so frustrated with Euclid’s inductive statements, which possess non-
deductive properties. In short, properly described, Euclidean geometry is a description of 
intuitively understood actual space. 

The logical inadequacies of Euclidean geometry resulted in the formation of new and 
more rigorous geometrical systems called non-Euclidean geometries. The beauty of non-
Euclidean geometries is in their logical rigor. Consequently, non-Euclidean systems possess, as 
a property, the summation (∑) of Euclidean postulates minus, the parallel postulate (A). Thus, 
a non-Euclidean geometry is of the form (∑−𝐴). Where ∑ represents all other Euclidean 
geometric postulates and (A) the postulate of parallel (Wilder, 1955 p.29). An important aspect 
of non-Euclidean geometry is that the subtraction of (A) is not the same as its contradiction. It 
is rather a replacement with some other postulate, which is necessarily contrary to  it  but not 
contradictory, such that a new system emerges. There is, therefore, no end to possible 
geometrical contraries to the parallel postulate. The logical consistency of the new geometry 
tends to awaken the logical ideal expected from the Euclidean system. The primacy of logicality 
undermines the importance of contents, thus giving rise to the analysis of these systems in 
terms of their combinatorial structures. This then became the impetus for formalism in 
modern mathematics and logic. The consequence of this for Euclidean geometry was the 
subtraction of its postulate and the demonstration of a logically consistent Euclidean geometry 
without the postulate of parallels by David Hilbert. 
 

The Notion of Formalism in Mathematics and Logic   
Symbolic absolutism in mathematical analysis is the essential characteristic of 

formalism. Thus, according to Hamilton (1978): 
The word “formal” … is used when referring to a situation where symbols 
are being used and where the behavior and properties of the symbols are 
determined completely by a given set of rules. In a formal system, the 
symbols have no meanings, and in dealing with them we must be careful to 
assume nothing about their properties other than what is specified in the 
system (p.27). 

 

Despite this explanation, it is noteworthy that the assumption of nothing in the 
construction of the formal system has been intuitively provided for in syntax. The nature of 
what is studied determines the rules. Thus, there is no possibility of formalisation without 
intuitive assumptions. This argument will become evident as the analysis proceeds. 

Thus, ordinarily all formal systems possess the following properties: 
(1) An alphabet of symbols. 
(2) A set of finite strings of these symbols, called well-formed formulas. These are to be 

thought of as the words and sentence in our formal language. 
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(3) A set of well-formed formulas, called axioms 
(4) A finite set of ‘rules of deduction’, i.e., rules which enable one to deduce a well-formed 

formula A, say, as a ‘direct consequence’ of a finite set of well-formed formulas A1, … 
Ak, say (Hamilton, 1978, p.27-28). 
All systems constructed in this way are assumed to be consistent, and their model is 

sure. After all, there is no formal construction without presuppositions. The presuppositions 
determine the rules. 

Hilbert assumed this kind of system yet rejected presuppositions and based it on 
arbitrariness in his attempt to establish the consistency of mathematics and the reality of its 
entities. As Frege has pointed out, if no ontological assumptions or presuppositions are made 
prior to the construction of the system, then the exercise is epistemologically futile. Thus, it is 
impossible not to presuppose an intuitive basis in formalistic constructions if their logical 
properties are to be considered. The history of mathematics reveals this in the analysis of 
geometrical formalism. Contemporary geometry, reduced to arithmetic and logic, makes 
unexpressed logical and arithmetic intuitive assumptions in its constructions. But it is 
nonetheless painful that the formalists in the foundations of mathematics are men with 
inconsistent claims. Claiming the independence of mathematical language, the formalists 
smuggle in the idea of an objectively existing combinational linguistic realm as the basis of 
formalization. Thus, in spite of its pretensions, traditional formalism is guilty of the fallacy of 
ontological convenience due to its assumptions of linguistic conceptualism, esoterism or 
empiricism as the foundation of mathematical formalism or constructions. Thus, "formalism is 
the identification of the sources of mathematical knowledge in mathematical symbolism or 
formalism" (Resnik, 1980, p. 54). What formalists seek to demonstrate is a meaningless 
language system or a completely non-objective ontology outside of symbols in mathematical 
practice. Hilbert had argued that "in the beginning there was a sign" (p. 82). 

The implication of the above analysis is that the seeds of contemporary axiomatic 
method are found in Greek and modern mathematical analysis. The tendency towards a first 
rigorous axiomatization of geometry was first found in Pascal in 1882. His intention was to 
provide the logical strictness claimed for Euclidean geometry. Even at that, axiomatic geometry 
presupposed the intuition of real and actual space as what is formalized. Thus, the view of the 
practise as mere symbolic, meaningless combinations is actually identifiable with a 
contemporary philosophy of mathematics called formalism. The frustrating results in meta-
mathematics are an indication of the philosophical mistakes of the system. Meaningless signs 
and symbols are inadequate; signs are, in reality, transcendental. They are not the realities 
intended in their usage. But the formalists have, on the contrary, settled down for signs. 
 
The Formalist Foundations of Mathematics 

Contentment with signs, as all there is for mathematical demonstration, has its roots in 
the idea of complex numbers, introduced by Bombelli, for providing solutions to hitherto 
unsolvable mathematical problems. The signs of Bombelli had no transcendence. They were 
the numbers themselves. Mathematicians used these numbers without asking for their 
meanings (Resnik, 1978, p. 56). Gauss used the notion in a geometrical demonstration, and 
from that time on, mathematicians came to view numbers and, in short, all of analysis in terms 
of geometry. This view of numbers prevailed until Weiestrass, Dedekind, and Cantor 
arithmetized analysis. The arithmetization of analysis introduced the notion of actual infinity. 
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This notion was vehemently opposed by Kronecker, whose confidence was threatened. 
Mathematics had been content with operations within known instances. How can 
mathematicians understand the notion of actual infinity? For some mathematicians, the 
project of naïve set theory posited by Cantor and Dedekind was problematic because of the 
notion of transfinite numbers and the attendant paradoxes it created in set theory. Set theory 
had to be axiomatized in order to address the problem of paradoxes. The axiomatization of set 
theory was the expurgation of meaning. Some would pretend that logical constants were to 
retain their meaning. But it is clear that they do not understand the implication of the new 
opening. The retention of logical constants and their meaning in formalised set theory marks 
an introduction of the intuition of being in general into a supposed formal combinatorics. This 
results in a contradiction. There is at once the claim to meaninglessness and then the claim to 
meaningfulness. If this contradiction is removed, then the formalism of set theory is made 
consistent. Gödel has demonstrated that such a system is mathematically incomplete for the 
proof of its logical consistency. The first attempt at addressing the problem of actual infinity 
collapses. 

Kronecker claims, therefore, that we cannot intuitively talk about actual infinity and be 
correct. According to him, we can only accept potential infinity. What was at stake was the 
problem of mathematical existence or the foundation of mathematical propositions, especially 
non-finite propositions. The problem faced is one that philosophers have tried to resolve down 
the ages. The main problem is how our science of mathematics is possible. This question has 
received extensive attention in Kantian philosophy. It is also not impossible to observe the 
Kantian influence running through some of the projects in the foundations of mathematics. 
One of the main complications of Kantian philosophy was his inability to transcend 
appearances to the things-in-themselves. The difficulty in Kantian transcendence is 
immediately expressed in the formalist response(s) to the problem of the cause(s) of 
mathematical propositions or the foundations of mathematical claims, especially concerning 
the existence of infinite and transfinite numbers. Regarding the question of actual infinity, 
Hein, a member of the formalist school, responded by arguing that "… the symbol and the 
number are one and the same" (p. 56). Accordingly, suppose that I am not satisfied to have 
nothing but positive rational numbers. I do not answer the question "What is a number?" by 
defining numbers conceptually, say, by introducing irrationals as limits, whose existence is 
presupposed. I define from the standpoint of a pure formalist and call certain tangible signs 
numbers. Thus, the existence of these numbers is not in question (p. 55). 

Hein never understood the depth of the implications arising from his claims. So many 
signs are numbers. Any sign can be a number, provided I decide that they are numbers. In the 
same vein, even the arithmetic numeral could be denied the quality of being a number if I so 
decided. Assuming this was granted to Hein, it would be impossible to understand how mere 
signs possess mathematical properties. If numbers are sheer signs, then chemical properties of 
signs are mathematical properties of numbers. But it does not follow. Hein spoke with his kind 
of confidence because he felt, that mathematics was a social convention. But he never 
observed the overwhelming uniformity of the nature of mathematical operations in completely 
diverse cultures. If he did, then he would have considered mathematical operations to be 
fundamentally human. Such generality, if granted, would result in linguistic esoterism, 
idealism, or platonism. To avoid such Platonism as the foundation of Hein’s formation is to 
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completely misunderstand him. The reason is that he assumes the uniformity of mathematical 
operations by human beings. Besides, he knows very well that it is an empirical fact. 

One of the reasons for the importance of Hein in the history of the foundations of 
mathematics lies in the fact that his response marked the origin of formalism in the field of 
research. Thus, Hein sought to return to the Bombellian formalist safe havens. But Frege and 
other mathematicians have sought to make it clear that mathematics is not a meaningless 
combinatorial linguistic system. It is a science. So, Hein must be forced out of the havens to 
face the facts. 

The strand of formalism championed by Hein is called game formalism. A more 
systematic demonstration of this system was carried out by Thomae. On the whole, formalism 
in the foundations of mathematics divides historically into three brands, namely: 
(1) Game formalism, which takes mathematics to be a meaningless, chess like game in 
which the symbolism functions as the ‘board and pieces’, 
(2) Theory formalism, which treats mathematics as the theory of formal systems;  
(3) Finitism, which views part of mathematics as a meaningful theory of certain symbolic 
objects and the remainder as an instrumentalistic extension of the former (p.54).  
 

Game formalism is traceable to Hein and Thomae. Theory formalism is identifiable with 
Haskell Curry and finitism with David Hilbert. The criticisms that rained on Hein almost 
undermined confidence in formalism. But Thomae sought to restore the formalist position by 
arguing for a more systematic formalism. Thus, he argued, arithmetic is like a chess game. The 
symbols represent the pieces. The symbols are meaningless on their own. Their operations 
depend on the rules that assign behaviour to them (p. 56). What is implied here is that 
arithmetic is actually found in the specified rules. It leads to arbitrariness and the proliferation 
of rules and arithmetic systems. In that sense, anything can parade as arithmetic, so long as 
there are symbols and rules. Chess games, draft games, scrabble, etc., are all arithmetic. The 
implications opened in Thomae’s analysis are controlled by his argument, that the rules are 
designed in such a way that the resultant axioms capture the perceptual manifold (p. 56). 
What this means is that the basis of the rules of the game are abstracted regularities of the 
arrangements of the perceptual manifolds. So, arithmetic is founded on manifolds. This goes 
back to Mill’s empiricism (Mill 1950). This empiricism was responsible for the kind of 
mathematical analysis presented by Thomae. 

He argued that the whole of arithmetic “as a computing game is constructible in the 
familiar way from the signs 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 …” (p.57). But as Frege has pointed out, 
Thomae used more signs than he listed, and gave no indication of how the additional signs are 
composed from the 10 signs given (p.57). But Thomae argued that such signs should be 
understood in the familiar way (p.57). The idea of the “familiar way” has a bi-polar 
interpretation. The “familiar way” as Frege claims is a presupposition of meaningful arithmetic. 
In that sense Thomae would be guilty of the fallacy of petitio principii. But if the “familiar way” 
is understood in terms of the familiar arrangements of the perceptual manifolds, then 
Thomae’s formalism becomes inconsistent. In either case, his formalism would be problematic. 
Thomae actually presupposed meaningful arithmetic. For instance, he used the commutative 
law without first providing for it in his system (p.58). Again, the law could be based on the 
arrangements of the perceptual manifolds. 

In short, inconsistency is what Thomae cannot avoid in his system. He assumed that 
arithmetic is a chess-like game of meaningless symbols. Later he argued that the axioms should 
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be arranged in such a way that they capture the perceptual manifolds. Why the perceptual 
manifolds? What Thomas’s system is demonstrating is the indispensability of intuition in 
mathematical construction. Properly understood, intuition is knowledge produced as the 
cooperation of the subject and object. A lot go into the construction of a formal system. One of 
such is natural logic, which is fundamentally intuitive or naïve. Such logic and the object of its 
operation are inexpressible in the formal alphabets. Thus, it is in the interpretation of the 
system by virtue of its specified domain that assumptions of the system become evident. Such 
interpretation is the formalistic syntax. The syntax of a game is determined by its intension. So, 
what is the intension of mathematics for Thomae? It is the comprehension of the perceptual 
manifolds in mathematical formalism. Thus, what was supposed to be meaningless has 
become meaningful, by the smuggling in of what was denied; intuition. 

The foundation of formalist’s problems is the assumption of two incompatible 
properties of axiomatization, namely; consistent formalism and completeness theorems. But 
as Gödel has shown in his meta-mathematical results, no consistent formalism is complete for 
the demonstration of consistency proof. Such formalism marks the expulsion of the schema of 
comprehension expressed set-theoretically as thus, if 𝜑is a property, then there exists a set Y = 
{X: 𝜑(x)}. Russell argues with other mathematicians that this schema is responsible for the 
paradox of set theory. So, the trend is to demonstrate a set theory without meaning. But Gödel 
has shown that all such set theories are mathematically incomplete. Incompleteness is the 
absence of intuition. And as Thomas Jech (1987) has argued, in set theory it is not the schema 
of comprehension that is paradoxical but the idea of the set of all sets (p.2). It is a distorted 
ontological assumption, with respect to sets, that are responsible for the paradox. Such 
assumption rest on sheer ontological convenience and not discovery. Anyone, who carefully 
studies the theory of logical types of Bertrand Russell, would discover that it is based not on 
theoretical necessity but academic policy. In the hierarchy of types, it has been decided that in 
the consideration of a lower type, a higher type is not included. That is the consequence of 
problematic formalistic assumptions. 

David Hilbert had argued that the problem of existence and truth could be addressed 
from the viewpoint of consistency proof. Consistency was the main thrust of Hilbert’s 
formalism. Yet he had to face the problem of existence and truth equally. The early Hilbert had 
thought, that if the consistency of a system is proven, then the truth of it propositions and the 
existence of its entities are sure. But the whole project of Hilbert is set forth in two 
inconsistent schemata. The idea of consistent formalism is inconsistent with the demand of 
logical consistency of the resultant system. One is non-intuitive whereas the other is intuitive 
respectively. One is absolutely meaningless whereas the other is meaningful, respectively. So, 
it is an introduction of problem, in short much problem, to seek the consistency proof of a 
strictly formal system. Gödel showed that it is impossible. The system is not complete to be 
able to carry out the project. Consistency proof is intuitive whereas formalism is not. Some 
have argued that the problem is resolvable if the axiom of consistency were introduced into 
the system. Such axioms like: p and ¬p. But Gödel has shown that if that concession were made 
at all, then there would be at least one statement in the system, which does not belong to it. 
Thereby making the system formalistically inconsistent. Thus, it is only when the system is 
inconsistent formalistically, that it is complete. But that is not meant to identify completeness 
with inconsistency. Formalistic inconsistency is a function of formalistic claims. If one were to 
claim that a system is strictly formalistic and yet demonstrates one that is actually 
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axiomatically intuitive possessing statements that are not derivable from its alphabets, then 
the person, in question, could be said to be guilty of formalistic inconsistency, which is 
inconsistency in claims and demonstration. 

Consequently, strict formalism is incomplete for the proof of logical or formalistic 
consistency. Strict formalism was what David Hilbert assumed and his intension was the proof 
of the logical consistency of mathematics. From the above analysis, the mathematical 
consequences of the programme are indubitable. Hilbert’s was incomplete. His project could 
not be carried out. Besides the idea of non-finite mathematics, which he sought to show, to be 
consistent with finite mathematics was intuitive and as such inexpressible in his meta-
mathematics. What frustration could be greater than that? Hilberts had to face the frustrating 
results arising from the works of the young Austrian mathematician, Kurt Gödel. He had argued 
with and ignored Frege’s and Kronecker’s criticisms. But he could not ignore the mathematical 
results of the young Gödel. 

David Hilbert, a German mathematician got into this trouble in his attempt to free what 
they call non-finitary mathematical statements from the attack of critics. Hilbert had argued 
that no one can send us out of the paradise which Cantor had created for us (Korner, 1971 
p.73). But the paradise gave rise to the paradoxes. Hilbert sought to resolve the paradoxes by 
providing the consistency of all of mathematics. His method of handling the project was what 
deprived him of Cantor’s paradise. Passion for truth especially when the legitimacy of 
transfinite inductive methodology has been shown cannot allow for the notion of the infinite 
to be abandoned. Yet to keep it, the idea and its referent would have to be properly 
contextualized and consistency demonstrated in complete or modeled systems. 

The contextualization of mathematical truths is what Hilbert has achieved in his 
theoretical analysis. Mathematics he argues has finite and definite objects (Resnik, 1980 p.80). 
These objects are the unary numeral and its production rules (Korner, 1971 p.77). The numeral 
is the figure “1” (Korner, 1971 p.77). In this sense, Hilbert followed Kant’s but not Leibniz’s idea 
of mathematical propositions. Leibniz had thought of mathematical propositions as sheer 
expressions of logical forms. But the role of logic in mathematics according to Kant, is not 
different from its role in other disciplines (Korner, 1971 p.72). Thus, mathematics is not logic, 
in the sense of being the demonstration of logical principles. The self-evidence of 
mathematical propositions is founded on their description of real existences. Kant thought of 
these existences primarily as the a priori intuitions of space and time (Korner, 1971 p.72). 
Hilbert is quoted by Korner as supporting this position in the following way: 

… something which is presupposed in the making of logical inferences and in 
carrying out of logical operations is already given in representation … i.e. 
certain extra-logical concrete objects, which are inductively present as 
immediate experience, and underlie all thought. If logical thinking is to be 
secure, these objects must be capable of being exhaustively surveyed in their 
parts; and the exhibition, the distinction, the succession of their parts, and 
their arrangement beside each other, must be given, with the objects 
themselves as something that cannot be reduced to anything else or indeed 
be in any need of such reduction (p.73). 

 

These irreducible for arithmetic are the unary numeral and the production rules; the 
figure ‘1’ and rules of generation of other figures. 
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Previously, Hilbert had sought the proof of consistency in logical implication of 
concepts. But in the new systems, he reduces questions of consistency to questions about 
derivability (Resnik, 1980, p.80). After all, he had argued that in the beginning there was a sign. 
In this overly symbolic domain, the proof of consistency of a system is attainable only in a 
formalistic context. The main property of the system, the existence of which is of necessity is 
the system of rules, which also contains the terms, the operations, the propositions and rules 
of transformations or inference. The provision of the terms and the rules of grammar and 
inference is however adequate for the demonstration of proofs of derivability. The resultant 
system, which is the meta-system, in Hilbert terminology, is an expression of the formal system 
(Mostowski, 1964 p.26). It is a demonstration of the formalistic properties of the system. Thus, 
given the figure ‘1’ and the production rule, Hilbert believes that the other natural numbers 
follow as thus: 1, 11, 111 etc. If these are translated into decimal numbers, we have 1, 2, 3 etc. 

Hilbert is of the opinion that every other aspect of mathematics is a function of the 
figure ‘1’ and its rules of production. He therefore divides mathematics into two major parts, 
namely; the construction and the theory. Mathematical construction is a function of rules. 
Theory is the description of constructions. The justification of the theory depends on the 
formal properties of the rules. The business of the justification of theory he divided into four 
parts; namely, the construction, the theory, formalism and meta-mathematics. The first two 
are those just explained. Formalism is a reconstruction of theory or a provision of ordinary 
formalistic primitive frame. The frame refers to the system of syntax. The formalization of 
theory is what Hilbert calls formalism. Formalism is not a total rewrite of theoretical 
demonstration but is an abstraction of the terms and rules guiding expressions of the theory. 
Thus, formalism is rather a rewrite of what Hilbert refers to as initial representation. The meta-
theory, which is a rewrite is a rewrite of the theory, which is an expression of formalism. 

Thus, Hilbert argued that: 
The consideration of the concrete theory alone creates a picture in which 
the science of mathematics is reducible to number equations, but the 
science of mathematics … is in no way exhausted by number equations and 
is not entirely reducible to such. Yet one can assert that it is an apparatus, 
which its application to whole numbers must always yield correct numeral 
equations (Korner, 1971 p.76). 

 

He refuted Brouwer and argued that “the formula game that Brouwer deprecates has, 
beside its mathematical value, an important general philosophical significance. For this formula 
game is carried out according to certain rules, in which the technique of our thinking is 
expressed” (Resnik, 1980 p.91). The said apparatus is not far from us according to Hilbert. It is 
the same logical thinking according to which number theory is possible (Korner, 1971 p.76). It 
was on the basis of this that his younger contemporary Haskell Curry declared that a formal 
system is a machine for the production of formulae. But it is noteworthy that Curry’s idea of 
the apparatus has nothing to do with logicality. In short, he accepts inconsistencies in Meta-
mathematics, so far as it is pragmatic. 
 
Critical Appraisal of the Formalist Foundations of Mathematics 

The implication of this for Hilbert is that mathematical theory and in short meta-
mathematical demonstrations are expressions of the propositional implications of the formal 
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system. Hilbert wished that meta-mathematics be consistent. But for that to happen, 
formalism would first have to be consistent. The consistency of meta-mathematics is however 
the consistency of formalism. But it has been discovered that meta-mathematics which is a 
resultant system of formalism is meaningless or non-intuitive. Consequently, the absence of 
intuition or meaning or internal interpretation (to use Dummett’s expression) makes meta-
mathematics incomplete to carry out the load of mathematical theory, which includes 
properties in intuitive formalistic system. 

The idea of meaningful mathematics to which Hilbert appealed is inadequate. The 
reason is that the objects of the system are symbols, which are in themselves meaningless. 
Epistemologically, Hilbert’s system is guilty of symbolic Platonism. Thus, the problematic in 
Hilbert’s meta-mathematics is actually rooted in the problematic of traditional epistemology. 
What flung Hilbert into questionable assumption is the absence of mathematical entities in the 
world. Korner saw this problem very clearly, then he wrote the minutes that “formalists think 
that statements of pure mathematics are empirical” (Korner, 1971 p.98). 

The description of Korner is ad rem with the business of the formalist. The younger 
contemporary of Hilbert, Haskell Curry makes the matter quite clear. Hilbert’s claim of the 
provability of the logical consistency of the system of consistent formalism was what Haskell 
Curry avoided. He accepted inconsistent formalism. Logic became to him, unimportant for 
mathematical thinking. There is no sense of logic outside the sense in which they are found in 
systems of logics created by human beings. His importance in this analysis lies in the 
ontological and epistemological implications he drew from previous mathematical philosophies 
to build his system. He got these especially a’la Hilbert. Curry translated mathematics into a 
meta-mathematics and thus built a physics of strokes expressions. Consequently, he argued 
that “mathematics is a science of formal systems” (Resnik, 1980 p.65). Statements of 
mathematics are such as “such and such is a theorem of such and such a formal system” (p.65). 
A formal system he argued can be identified as containing primitive frame, which consists of 
presenting (1) a list of terms of the formal system (2) the elementary propositions of the 
formal system, and (3) the elementary theorems of the formal system (p.65). 

The terms of the formal system consist of tokens, operations and rules for forming 
terms using the operations’ (p.66). The elementary propositions are formed from elementary 
predicates and number and the kinds of arguments that the predicates takes (p.66). Predicates 
here could be understood in terms of relations, rules or functions. For instance, the primitive 
predicate of identity. The next thing is the determination of axioms by presenting elementary 
propositions under the label axioms. This is followed by rules of procedures, according to 
which it would be determined whether a given elementary proposition follows from another or 
not (p.66). “The elementary theorems of a formal system are simply the axioms and the 
elementary propositions that can be generated from them according to the rules of 
procedure” (p.66). 

Curry thinks that in this way, he had achieved meaningful mathematics. But this is not 
far from what Hilbert did. The demonstration of Hilbert was supposed to be the demonstration 
of formal properties. In short finite mathematics need not be abandoned. Non-finite 
mathematics is the amplification of infinite mathematics. Thus, what is needed was the proof 
of the consistency of the system thus amplified. Hilbert thought that the finite formalistic 
method was the only one available. He believed that there was no more to mathematics than 
the concrete objects of constructions. To proof the consistency of the whole system is to show 
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that the ideal statements are interpretable in terms of the concrete ones. Thus, in the final 
analysis, mathematical theory is a meta-theory of formalism or constructions. The idea of truth 
in both Hilbert and Curry is uniform; theoremhood. 

In the theoremhood idea of truth, the … predicate P of a formal system (S) 
is defined by the condition that ordered n-tuple of terms (t1, …, tn) belongs 
to the extension of a predicate P just in case the elementary proposition 
Pt1, …, tn is a theorem in S. The elementary proposition Pt1, …, tn is true, 
however just in case (t1, …, tn) belongs to the extension of P (Resnik, 1980 
p.67). 

 

Consequently, the statement ├ X is true just in case X is a theorem of a given formal 
system under study. This analysis is better expressed by Resnik as thus “... in ordinary formal 
system ZF (Zemelo-Fraenkel), the following sentence is a theorem: (∀𝑥)(∃𝑦)(x∈y). In the Curry’s 
correlate, … the expression‘(∀𝑥)(∃y)(x∈y)’ symbolizes a term and the expression ‘├ (∀𝑥)(∃y) 
(x∈y)’ symbolizes a true elementary  proposition” (p.68). 

Curry opined that the statements of meta-mathematics are really meta-propositions. 
Meta-propositions are not meta-mathematical categorical propositions. They are rather meta-
mathematical hypothetical propositions. The use of meta-proposition marks the ontological 
priority of the initial representation (the formal system), which Hilbert hinted on. Thus, the 
question that immediately arises is that of the foundation of the formal system. Hilbert and 
Curry cannot pretend that such a system is a generalization from the induction of systems in 
experience (i.e. those designed by people). If that is granted to them all, a question immediately 
arises concerning the cultural uniformity of mathematical formalism as a syntactical system. 
Korner (1971) answers this question by arguing that “if we accept the … distinctions between 
empirical concepts and operations and the non-empirical ones then a science of empirical 
stroke-expressions and operations must be distinguished from the science of idealized stroke-
expression and operations. The latter alone … would be meta-mathematics” (p.105). 

The above submission is alive to Hilbert and Curry. It could be recalled that Hilbert 
called mathematics the general apparatus, which when applied to numbers gives number 
equations. This was a mathematical idealism, a Platonism and a form of esoterism. Besides, 
Curry claimed that the property of formal systems exposed above are abstract general 
properties of all formal systems. The concept of generality is not the concept at issue. But what 
is at issue is that of the cultural uniformity of mathematical expression, which he accepts. 

A much more critical appraisal of formalism, which align with the ideas of this essay 
came from Brouwer and Poincare. Frege had used the criticism against Hein. The accusation 
could be summarized as meaning that formalism presupposes meaningful mathematics. 
Brouwer and Poincare’s arguments are put as follows (1) the formalists do not explain why we 
are interested in certain systems and not others; (2) they must admit contradictory results as 
being mathematical and (3) in setting up their system they fall back on the assumption that 
there is a mind independent world of mathematical objects to be described by the axioms” 
(p.81). The world of mathematical object for the formalist are the signs and the rules. It is 
formalism. The foregoing analysis shows that if formalism were accused of the cognitive 
autocracy of the object, then there would be no freedom. To solve the problem of the lack of 
object, formalism seeks a convenient ontology, in symbolism. Meaningless symbols are the 
domain of the formalist foundations of mathematics. Cognitive autocracy of the object is an 
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epistemological assumption that the cognitive object in total exclusion of the input of the 
subject provides absolute grounds for the possibility of knowledge claims. Hence, to 
demonstrate the foundations of knowledge is to exclusively present the object. Where there is 
a skepticism of the object, such skepticism is resolved by the presentation of the existence of 
some queer putative domain of object as a convenient ontological domain to settle the 
skepticism; this exercise is termed the fallacy of ontological convenience in the paper. 

The formalist mathematicians thought that meaninglessness could be avoided by meta-
mathematics. But it is a pity that there is no possibility of actual meta-mathematics. Meta-
mathematics is a symbolic demonstration of the formal properties of the formal system. If the 
formal system is already constructed as a simple demarcated system, with all its propositions 
set down, then meta-mathematics becomes a transformation of the formal system in the 
language of the system or another language. The implication of this is, that the option of 
meaningful mathematics is denied to Hilbert. With the denial, it becomes undecidable whether 
the system is consistent or not. Hence, Hilbert finitistic proof of mathematical consistency 
cannot be carried out. 

This could tempt one to think that mathematics is inconsistent, as some persons find 
joy in saying. Mathematics is consistent. Hilbert’s analysis of the science is one of the most 
ingenious analysis ever presented. He argued that the science of mathematics has both a real 
and an ideal part. The latter is a logical idealization of the former and it is interpretable in terms 
of it. In making this assertion he defeated inductive fallacy and showed the legitimacy of the 
universality and necessity of scientific statements. The logical idealization or induction of fact is 
not an idealism. It is a hypothetical analyze of a singularly truth. For instance, in a distinctly 
described instance, if it is discovered that ‘├ (∃x) 𝜑(x)’, it could be idealized as such ‘├ 
(∀𝑥)𝜑(x)’, without the fear of existential fallacy. The non-finitary expression of this truth could 
be understood as stating the following: ‘if x ever has the property 𝜑 which it has in the time of 
judgment, then ‘x is 𝜑 until it is proven otherwise’. The only mistake Hilbert made was his 
inability to detect that the legitimacy of this analysis is inexpressible in a non-intuitive meta-
theory. Besides, Hilbert was completely ignorant of the fact that formalism would produce non-
intuitive results which is not adequate for consistency proof. 
 

Conclusion 
In conclusion, what Hilbert suffers is not as a result of his analysis of the meaning of 

mathematics but because of his approach to the proof. If he had settled down to his analysis 
alone, the proof would have necessarily followed. The use of transfinite inductive analysis, 
which is the concept of logical idealization, suffices to prove the consistency of the system. 
Brouwer and Poincare made this observation and argued also that Hilbert’s project of 
consistency proof for mathematics begs the question. Anyhow, proving the consistency of the 
whole of mathematics (finite and non-finite) is not the sin of Hilbert. His crime is the 
expurgating of intuition in an exercise that demands intuition for its legitimacy, the proof of 
logical consistency. This problem is rooted in traditional epistemic underestimation of the 
contribution of the cognitive subject in foundational analysis, which is responsible for the 
cognitive autocracy of the object, the objective theory of justification, the fallacy of ontological 
convenience, and the controversies in the programme. 
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